

Introduction: The sandbox story 1

Are users gritty enough to let sandboxing work? 1

The sandbox gets smarter – but is it enough?

The approach-avoidance dilemma of browser-executable code

Lock applications in, toss out the key

Browsing, contained

The solution within

The bottom line

Table of Contents

1

1

2

3

4

4

5

6

1

When you think about common anti-malware security techniques, ‘sandboxing’

undoubtedly comes to mind. This technique was first applied in the early 1990s and

has proven so highly effective that it is still used widely today, over twenty years later.

In recent years, sandboxes with built-in analytics have been leveraged to add an extra

layer of security to anti-virus, firewall and other defensive solutions, providing a safe

place to “detonate” files that might carry zero-day exploits, ransomware and other

threats without risking endpoints or the networks to which they’re connected.

Today, with browser-borne threats becoming an increasingly grave concern for

organizational endpoints and networks, does the sandboxing approach still provide adequate protection

against browser-executable malicious code? Let’s dig into the issue and see where it leads us.

What exactly is a ‘sandbox’? Just like sandboxes found in

a playground, digital sandboxes are enclosed areas

designed for experimentation and “make-believe” – in this

case, not for play but rather as walled-off spaces on a user

device or server where incoming files are executed to see

if they’re safe for general usage. Within the sandbox, files

cannot access external resources (although some

implementations may permit configurations that allow

it). While software may run indefinitely within sandboxes, in the cybersecurity

context, sandboxes generally serve as an interim waystation to full access,

where files and programs are quarantined for testing until proven safe.

 Sandboxes are a valuable security technology, with a few key limitations. First, because all file activities

must be executed within the sandbox to ensure they are safe, sandboxing is s-l-o-w. In addition, basic

sandboxing depends on user judgment to determine when it’s safe to crack open the box and allow access

to external resources, or to fully release files from the sandbox. A premature or faulty decision might expose

the sandbox as a Pandora’s Box, resulting in malware infecting the endpoint and from there, entire

organizational networks.

Introduction: The sandbox story

Are users gritty enough to let sandboxing work?

For over two decades,
sandboxes have been

a safe place to
detonate files that
might be malicious

Premature or faulty
user decisions can set

malware free

2

In the past decade, sandboxes have emerged from the playground and grown more

sophisticated. Some of the most prominent players in cyberdefense have beefed

up legacy sandboxes with behavioral analytics, heuristics and artificial intelligence

(AI) to both speed up analysis and determine when it’s safe to lift the lid from the

box. These solutions can be delivered as local sandboxes on endpoints or

networks, or based in the cloud. Leading firewall vendors, such as Check Point and

Sophos, are integrating these smart sandboxes with their firewall solutions as well.

While intelligent sandbox technologies go a long way toward eliminating human-factor errors and

expediting the process of examining file behavior, they also introduce new weaknesses. Some of these are

designed in, such as processes that speed up sandboxing by releasing code in batches, and depend on

technology to put the genii back in the bottle if malware is discovered in a subsequent batch. Others are

vulnerabilities that are quickly exploited by malicious hackers, who have developed innovative evasion

techniques to circumvent even the most rigorous sandboxing solutions.

Extended ‘sleep’ is an example of how hackers have exploited one such vulnerability, in the ongoing

cat-and-mouse game of malware detection and evasion. Sophisticated malware files slumber as long as

they’re inside the sandbox, behaving harmlessly so as not to raise any alarms. Malicious “tells” remain

hidden for the duration of the test period, until the files are

deemed safe by the sandboxing system. Once the

benign-seeming files are released from the sandbox to the

end-user computer, however, they spring to life, attacking

vulnerable networks and systems, and potentially resulting in

security breaches with heavy costs.

Recent reports indicate that ransomware including Karmen,

Locky and Cerber all include successful anti-sandbox features,

tricks or tools. Ironically, what was intended as an anti-

sandbox “kill switch” in WannaCry was poorly designed and

instead is believed to have stopped the spread of one of the

most vicious ransomware attacks in memory. Next time,

organizations may not be so lucky.

The sandbox gets smarter - but is it enough?

Malicious hackers
have developed

innovative malware
that circumvents even

the smartest
sandboxing solutions

3

Sandboxes most definitely have their place in the cybersecurity hall of fame,

alongside anti-virus solutions, firewalls, secure web gateways and other solutions, as

an important part of a layered defense strategy. And without doubt, leading security

vendors will continue upping their sandbox technology to stay ahead of malicious

and innovative hackers.

However, when it comes to

protecting networks from

attacks originating via browsers, currently the most

prevalent threat vector, today’s widely used defensive

security products -- firewalls, secure web gateways,

sandboxes, URL filters and others – are essential, but

still not enough. Here’s why:

Today’s browsers are sophisticated environments

where millions of tiny programs execute without being

downloaded, and over which neither users nor system

administrators have much control. In essence,

browser-executable code was created to usher outside

activity from the Internet onto endpoint computers. This is exactly what makes browsers so powerful and

essential, but also so exceedingly dangerous.

Browser-executable code runs constantly, at virtually every moment that a user browses a website, in real-

time. Because it is never actually downloaded, these tiny apps simply can’t be sealed in a sandbox to cool

their heels while being observed. However, they can introduce malware and fileless exploit kits that quickly

spread from endpoint to server, and throughout the whole organizational network. The deal is done before

the malware touches the sandbox. And no amount of behavioral analysis, heuristics or AI can stop it.

Browsing is such an integral part of business activity that walling off Internet use on virtual machines or in

no-access sandboxes is out of the question. Users access out-of-the-sandbox endpoint functions such as

printing, downloading or email applications via their browser constantly and without thought. And when

they do, the cat is out of the bag, the deal is done, and no number of clichés can stop the malware,

ransomware and other threats from spreading through the endpoint and onto the system.

If sandboxes are just part of the cybersecurity answer and, like anti-virus and firewalls, provide only partial

protection from browser-borne threats, how can businesses secure endpoints and networks from browser-

executable malware and the browsers that run it blindly?

Control vs. access: A delicate balance

Browser-borne code
executes without

being downloaded,
before it even gets to

the sandbox

4

The answer lies in software containers that are purpose-

built to isolate browsing.

Containers are in many ways similar to sandboxes, with a

crucial conceptual twist. While sandboxes generally serve

as a quarantined waystation for files en route to the

endpoint or network, containers are the end of the road

for applications.

In the world of containers, all applications are assumed to be deadly. Not guilty

until proven innocent – just guilty, period, with no chance of reprieve. There’s no testing, no checking, no

“what if” or “so far.” What happens in the container stays in the container, so it can never spread to the

endpoint operating system or from there to the network. Each container can be designed as an isolated

environment tailor-made for just a single application, with only the elements required for that purpose. As

a result, it is inherently more streamlined and easily managed than physical or even virtual machines and

offers a smaller attack surface, making it an optimal technology for cybersecurity applications.

As executable code, not just files, browser-borne content cannot be successfully

sandboxed. But it can be contained, along with the browser that runs it. Remote

browsing entails creating virtual browsers within containers, where browser-

executable code runs without risk. These processes, both good and malicious, stay

permanently locked in the container, fully isolated, until it’s destroyed. By

eliminating the container completely, we also eliminate opportunities for malware

to persist.

While irrevocably double-sealing the browser, along with attendant executable code, is a great security

move, we’re left with the conundrum of how users can get full, integrated and seamless access to the

websites they need. If a browser executes within a container and remains sealed within, how can users

interact with and benefit from the Internet from their regular workplace devices? How can they flip

between work applications and internet sites, clicking, copying, downloading and printing as they proceed?

Lock applications in, toss out the key

Browsing, contained

In the world of
software containers,
applications can be

isolated with no
chance of reprieve

The trick is accessing

application outcomes,

while the app remains

sealed off

5

The answer lies in what resides in the container, alongside the virtual browser.

Remote Browser Isolation (RBI), one of the hottest and most effective new

cybersecurity solutions, leverages container-based virtual browsers to render

websites as safe content and stream it to endpoint browsers in real time. RBI

provides a seamless, interactive browsing experience that is transparent to

users – while keeping all browser-executable code locked safely within the

container.

Like sandboxes, containers may be created on endpoints or organizational

networks. The most secure solutions, such as Ericom Shield, locate the containers

off organizational networks and away from all

endpoints, in the cloud or network DMZ, so that no

active code ever reaches the endpoint or organizational

network.

To prevent possible cross-site contamination, each

browser tab executes in a new virtual browser, in its

very own container. And in a further safeguard, each

browser or tab is destroyed, along with its container and

any code that persists, shortly after going inactive,

although sessions are quickly restored if the user

returns. Containers are never reused: Each browsing

session is opened in a fresh new container. Together,

these measures ensure that chances of accidental

leakage and contamination drop to virtually nil.

The solution within

Remote Browser

Isolation provides a

natural browsing

experience while

keeping risky

browser-executable

code locked safely

away

6

If sandboxing is the ‘original’ isolation technique, then virtual containers are

definitely the ‘new, tougher and much improved’ version. Taking the same core

principles that made sandboxing so effective for so long – quarantining files that

may contain malware threats – virtual containers have gone many steps further by

applying the method to applications, not just files, and leveraging full browser

isolation and container destruction to guard organizational systems against even

the shrewdest of modern malware, ransomware and other threats.

The bottom line

Virtual containers are

the new, tougher and

much improved

isolation technique,

that works for

applications as well as

for files

7

Ericom Shield is an advanced remote browser isolation solution that adds a powerful layer to

organizational defense-in-depth strategy by isolating malware, ransomware and other threats

where they can’t harm corporate network or user devices. It transparently secures Internet use,

including file downloads, while reducing risk, costs and operational burden to IT staff

responsible for browsing operations. Ericom Shield harnesses the power of isolation to deliver

secure browsing and protect the corporate network and endpoints.

Contact us now for more information about how Ericom Shield Remote Browser Isolation can

protect your organization from browser-borne ransomware, malware and other threats

www.ericom.com/solutions/browser-isolation | shield@ericom.com
US: (201)767-2210 Europe: +44 (0)1905 777970 ROW: +972-2-591-1700

mailto:shield@ericom.com
http://www.ericom.com/solutions/browser-isolation

